Finite element approximation of diffusion equations with convolution terms

نویسنده

  • Malgorzata Peszynska
چکیده

Approximation of solutions to diffusion equations with memory represented by convolution integral terms is considered. Such problems arise from modeling of flows in fissured media. Convergence of the method is proved and results of numerical experiments confirming the theoretical results are presented. The advantages of implementation of the algorithm in a multiprocessing environment are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

An Error Estimate for Mmoc-mfem Based on Convolution for Porous Media Flow

Mathematical models used to describe porous medium flow processes in petroleum reservoir simulation, groundwater contaminant transport, and other applications lead to a coupled system of time-dependent nonlinear partial differential equations (PDEs) [1]. Conventional second-order finite difference or finite element methods (FDMs, FEMs) tend to yield solutions with spurious oscillations. In indu...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Stability of Explicit Runge-Kutta Methods for High Order Finite Element Approximation of Linear Parabolic Equations

We study the stability of explicit Runge-Kutta methods for high order Lagrangian finite element approximation of linear parabolic equations and establish bounds on the largest eigenvalue of the system matrix which determines the largest permissible time step. A bound expressed in terms of the ratio of the diagonal entries of the stiffness and mass matrices is shown to be tight within a small fa...

متن کامل

Application of Convolution of Daubechies Wavelet in Solving 3D Microscale DPL Problem

In this work, the triple convolution of Daubechies wavelet is used to solve the three dimensional (3D) microscale Dual Phase Lag (DPL) problem. Also, numerical solution of 3D time-dependent initial-boundary value problems of a microscopic heat equation is presented. To generate a 3D wavelet we used the triple convolution of a one dimensional wavelet. Using convolution we get a scaling function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996